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Abstract— Genetic programming (GP) is one of a number of machine learning techniques in which a computer program is given the 
elements of possible solutions to the )( ppp   collisions at high and ultrahigh energies.  GP can be used to calculate pseudo-rapidity 
distribution of charged particles ddNch /  of )( ppp    interaction at total centre of mass energies S =23.6, 53, 200, 546, 900, 
1800 GeV and 2.36 TeV.  The discovered function obtained from GP shows an excellent fitting to the experimental data.  Moreover, it is 
capable for predicting the pseudo-rapidity at S =7 TeV that are not used in the training.  Also, ddNch / is expected at S =10 and 
14 TeV using GP model and with other models. The results showed very accurate fitting to the experimental data recommending it to be a 
good alternative to other theoretical technique.  

Index Terms— Genetic programming (GP), machine learning (ML), proton-proton interaction, pseudo-rapidity distribution. 

——————————      —————————— 

1 INTRODUCTION                                                                     
igh energy physics (HEP) research focuses on the fun-
damental particles and forces in the universe. The lep-
tons, like the electrons and muons, and the quarks from 

which the strongly interacting particles, such as the proton 
and neutron, are formed constitute the fundamental particles. 
Extremely high energy collisions are required to get these par-
ticles close enough to study and understanding the interac-
tions between them [1–6]. 
       One of the fundamental interactions in high-energy phys-
ics is the proton-proton (p-p) interaction particularly above the 
threshold of pion production [7]. The Large Hadron Collider 
(LHC) at CERN is designed for colliding proton-proton beams 
unto S  = 14 TeV [8]. Collisions at these unprecedented high 
energies will provide opportunities for new physics [8]. The 
history of studies of this interaction is therefore very long and 
extremely interesting from both the experimental and theoret-
ical points of view. Different models are provided for the ha-
dron structure [9-12], such as the three-fireball model [13], 
quark models [14–16], fragmentation model [17-19] and many 
others. 
      Parallel to theoretical models, there are numerical solutions 
have been introduced in High energy such as the application 
of artificial intelligence (or the machine learning) such as ge-
netic programming (GP) has a strong presence in the high 
energy physics [20–24]. The effort to understand the interac-
tions of fundamental particles requires complex data analysis 
for which machine learning (ML) algorithms are vital [25]. In 
this sense, ML techniques such as artificial neural network 
[26], genetic algorithm [27] and Genetic programming [28], 

PYTHIA [29] and PHOJET [30] Monte Carlo models. The 
PHOJET model combines the ideas based on a dual parton 
model [31] on soft process of particle production and uses 
lowest-order perturbative QCD for hard process. PYTHIA on 
the other hand uses string fragmentation as a process of ha-
dronization and tends to use the perturbative parton-parton 
scattering for low to high TP particle production. In the 
present work, we illustrate the Genetic programming (GP) 
that is known as a technique with the capability of generating 
mathematical equations, which are able to define models for 
the given training data. Genetic programming was proposed 
by Koza [32].  
     The rest of the paper is organized as follows: Section 2 gives 
a review to the basics of the GP technique. Section 3 explains 
how genetic programing is used on modeling the 

)( ppp  collisions.  Finally, the results and conclusion are 
provided. 
 

2 GENETIC PROGRAMMING OVERVIEW 
Genetic programming (GP) is an extension to Genetic Algo-
rithms (GA). GA is an optimization and search technique 
based on the principles of genetics and natural selection. A GA 
allows a population composed of many individuals (chromo-
some) to evolve under specified selection rules to a state that 
maximizes the “fitness” (i.e. minimizes the cost function). The 
GP is similar to genetic algorithms but unlike the latter its so-
lution is a computer program or an equation as against a set of 
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numbers in the GA. A good explanation of various concepts 
related to GP can be found in Koza (1992) [32-40]. 
      In GP a random population of individuals (equations or 
computer programs) is created, the fitness of individuals is 
evaluated and then the ‘parents’ are selected out of these indi-
viduals. The parents are then made to yield ‘offspring’s’ by the 
process of reproduction, mutation and crossover. The creation 
of offspring’s continues (in an iterative manner) until a speci-
fied number of offspring’s in a generation are produced and 
further until another specified number of generations are 
created. The GP thus transforms one population of individuals 
into another one in an iterative manner by the natural genetic 
operations like reproduction, mutation and crossover. 
      Each individual contributes with its own genetic informa-
tion to the building of new ones (offspring) adapted to the 
environment with higher chances of surviving. This is the ba-
sis of genetic algorithms and programming. The representa-
tion of a solution for the problem provided by the GP algo-
rithm is a tree (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
     A tree is a model representation that contains nodes and 
leaves. Nodes are mathematical operators (multiplication, ad-
dition, subtraction, and division,…..). Leaves are terminals 
(the attributes of the dataset and random numbers).  Trees are 
manipulated through genetic operators (reproduction, muta-
tion and crossover). The crossover operator points a tree 
branch and exchanges it with another branch and obtains new 
trees. The mutation operator changes the branch for a random 
new branch. Reproduction means an exact duplication of the 
program if it is found to be acceptable by the fitness criteria 
(Fig. 2). The length of the chromosome is variable. 
     To select individuals for crossover, mutation, reproduction 
and to determine how good the individuals are at solving the 
given problem, fitness functions are employed. The fitness 
function assesses how an individual is fitted to the environ-
ment of a domain problem, after calculating the fitness for all 
individuals. There are many varieties fitness function such as 
number of hits, relative squared error (RSE), mean squared 

error (MSE) etc. that can be applied for evaluating perfor-
mance of generated computer program (solution) [41]. 
       GP evolves computer programs to solve problems by ex-
ecuting the following steps: 
Step 1: One or more initial population of individuals is ran-
domly generated with functions and terminals related to the        
problem domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: The implementation of GP iteratively performs the fol-
lowing steps until the termination criterion has been satisfied: 

i.  The fitness value of every individual is estimated accord-
ing to a selected fitness measure. 
ii. All individuals in the population are sorted based on 
their fitness values. 
iii. The next generation is produced using the genetic oper-
ations (reproduction, crossover and mutation). 
iv. The termination criterion is checked. If it is not satisfied, 
the next iteration is performed; if satisfied go to step 3. 

Step 3: The result may be a solution to the problem domain. 
 

3   THE PROPOSED GP MODEL 
We have proposed GP model trained using experimental data 
to simulate and predict the pseudo rapidity disribution for 

)( ppp   intreaction at S  = 23.6,53,200,546,900,1800 GeV, 
2.36, 7, 10, and 14TeV [42 - 53]. 
     The proposed GP model for the pseudo-rapidity of charged 
particles has the total center of mass energy S and the pseu-
dorapidity   as inputs. The output is the corresponding 
pseudo-rapidity distributions ddNch / , (see Figure 3). 
    Our representation, the fitness function is calculated as a 
negative value of the total absolute performance error of the 
discovered function on the experimental data set, i.e., a lower 
error must correspond to a higher fitness. The total perfor-
mance error can be defined for all the experimental data (i = 1, 

 

 

Fig. 1. Tree representation of the program 
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Fig. 2. Crossover and mutation processes. 
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Where, jX  represents the experimental data for element j  
and jY  represents the calculated results for element j . The 
running process stops when the error E  is reduced to an ac-
ceptable level. 
 

              
         
                
                      

 
 
     
                               

 
 
 

 
4    RESULTS 
GP was run for 100 generations with a maximum population 
size of 1500. The operators (and selection probability) were: 
crossover with probability 0.9 and mutation with probability 
0.01. The function set is (+, −, /, log2, ln, exp, sin, cos, sqrt), 
and the terminal set is (random constance from 0 to 15, √s, η). 
The “full” initialization method was used with an initial max-
imum depth of 27, and tournament selection with a tourna-
ment size of 6 as in Table 1. 

     Training data are the total center of mass energy ranging 
over about two orders of magnitude, from the ISR ( S = 23.6 
GeV) to the Tevatron (CDF data, S  =1.8 and 3.36 TeV).The 
simulation results contain seven trained energies ( S =23.6, 
53, 200, 546, 900, 1800 GeV and 2.36 TeV) to assure the simula-
tion capability of the proposed GP model.  Also, the discov-
ered function (in the Appendix) has been trained to associate 
the input patterns ( S , ) to the target output patterns 
( ddNch / ) for the above energies. The discovered function 
has been used to predict S =7 TeV and expect for S =10 
and 14 TeV. Figures 4, 5and 6 illustrate the experimental, 
trained and predicted pseudo-rapidity distribution of charged 

particles. The GP model performed almost exact fitting to the 
experimental data. The expectation values of energies (10 and 
14 TeV) for ddNch / using GP compared with other conven-
tional theoretical technique (Extrapolation, PHOJET and PY-
THIA). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1 
THE OBTAINED OPTIMAL GP CONTROL PARAMETERS. 

  

GP parameters   GP model 
GENERATIONS                        
POPULATIONS       

     100 
     1500 

FUNCTION SET      +,-.* ,/,LN,SIN,COS       

     ,SQRT,EXP 
TERMINAL SET    S AND   

SELECTION 
METHOD     
MUTATION RATE 
CROSSOVER RATE 
FITNESS FUNCTION 

    TOURNAMENT 
 

     0.01 
     0.9 
     MSE 

 

Fig. 3. A block diagram of the GP model. 
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5    CONCLUSION 
Genetic programming (GP) has been run to model the 

)( ppp   interaction at high and ultrahigh energies. GP  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6. Expected pseudorapidity distribution of 
charged particles for pp   collisions at S = 10, 
14 TeV by using different models. 
 

 

 

 

Fig. 4. Experimental and simulated pseudo-rapidity 
distribution of charged particles for )( ppp   at 

S =23.6, 53, 200, 546, 900, 1800 GeV and 2.36 TeV 
( ) Experimental data (ـــ) GP model 
 

 

Figure 5. Experimental, and predicted pseudo-
rapidity distribution of charged particles for 

)( ppp  collision at S = 7 TeV. 
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discovered a function that describes pseudo-rapidity distribu-
tion of pions )( ppp   from interaction at different high 
energies. GP results have been compared to extrapolation, 
PYTHIA and PHOJET. It is observed that at both S = 10 and 
14 TeV, the predictions from extrapolation are high than the 
GP model. The GP results are close to the PYTHIA. The values 
from GP are higher than those from PHOJET model.  In gener-
al all the three distributions have almost similar shape with 
the GP model. 
     The discovered function of GP model shows good match to 
the experimental data. Moreover, the discovered function is 
capable of predicting experimental data for pseudo-rapidity 
distribution that are not used in the training session. However, 
the overall similarity of the results proves that the GP model 
works correctly finding, in automatic way, powerful simula-
tion and prediction. This is a remarkable result for GP, taking 
into account that it uses only a list of functions and variables 
as input, without any knowledge about the process.   Finally, 
we conclude that GP have become one of the important re-
search areas in high-energy physics. 
 
     
APPENDIX 
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